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Brief intro to Casimir phys.



The Casimir force
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 Alternative interpretation: fluctuating 
charges and currents

 The magnitude and sign of the force 
depends on geometry, materials, and 
temperature

 Universal effect from confinement of 
vacuum fluctuations

~, c Depends only on         , and geometry



Some relevant applications
 Gravitation / Particle theory
The Casimir force is the main background force to measure 
non-Newtonian corrections to gravity predicted by high 
energy physics

 Quantum Science and Technology
Atom-surface interactions (e.g., ion traps, atom 
chips, BECs) and precision measurements

Nanotechnology
Casimir force is a challenge 
(stiction), but also an opportunity 
(contactless force transmission)



Modern experiments
 Torsion pendulum  Atomic force microscope

 MEMS and NEMS
Lamoreaux (1997), 0.7-6.0 um Mohideen (1998), 0.1-0.9 um

Capasso (2001), Decca (2003), 0.2-1.0 um



The Lifshitz formula
Casimir interaction energy between materials slabs (Lifshitz 1956)
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Scattering theory



Going to imaginary freq.
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imaginary frequency axis at 
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Some limiting cases:

F / Td�3

F / d�3

F / d�4
(non-retarded limit, small distances)
(retarded limit, larger distances)
(classical limit, very large distances)

 Casimir physics is a broad-band frequency phenomenon



Measuring Casimir forces



Torsional pendulum set-up

The correction voltage is the physical observable, and it is 
proportional to the force between the Casimir plates

An imbalance in capacitance is amplified and sent to a phase 
sensitive detector (PSD), which generates error signals.

SPID(d, Va)
A proportional integro-differential (PID) controller provides a 
feedback correction voltage                     to the compensator plates, 
restoring equilibrium.

Yale experiment: upgrade of Lamoreaux’s 1997 experiment

F ⇤ (SPID + 9V )2 ⇥ (9V )2 + 2SPID � 9V



Typical Casimir measurement
SPID(d, Va) = Sdc(d�⇥) + Sa(d, Va) + Sr(d)

force-free component of 
signal at large separations

electrostatic signal in 
response to an applied 
external voltage

residual signal due to 
distance-dependent 
forces, e.g. Casimir

The electrostatic signal between the spherical lens and the plate, in PFA (          
), isd� R

Sa(d, Va) = ⇤⇥0R(Va � Vm)2/�d � force-voltage conversion factor

This signal is minimized (           ) when               , and the electrostatic minimizing 
potential       is then defined to be the contact potential between the plates.

Sa = 0 Va = Vm

Vm

Naive picture (often used in the past): 

Va = VmCounterbias               fixed at large separations, 
and assumed to be distance-independent

electrostatic force 
is supposedly 

nullified



“Parabola” measurements

SPID(d, Va) = S0 + k(Va � Vm)2

A range of plate voltages      is applied, 
and at a given nominal absolute distance 
the response is fitted to a parabola

Va

Calibration routine (Iannuzzi et al, PNAS 2004) 

Fitting parameters:
k = k(d)

Vm = Vm(d)
S0 = S0(d)

voltage-force calibration factor + absolute distance
distance-dependent minimizing potential
force residuals: Casimir + non-Newtonian gravity + ....



Force residuals for Ge plates

Residuals from Coulomb 
force obtained from the value 
of the PID signal at the 
minima of each parabola, 

S0(d)� Fr(d)

In the experiment, these force residuals are too large to be explained 
just by the Casimir-Lifshitz force between the Ge plates.

In fact, the experimental data shows a         force residual at distances!
             , where the Casimir force should be negligible.

1/d
d > 5µm



Subtracting 1/d in Yale Ge exp.

After subtraction of the electrostatic force residual F el
r (d) = F0 + ⇥�0R

[Vm(d) + V1]2 + V 2
rms

d

�2
0 � 1

d < 5µmFor

for all the 
theoretical models 

Error bars:

3% statistical 
uncertainties

10% fitting 
uncertainties from 
electrostatic analysis

CASIMIR?

Residual force at 
minima of parabolas



Subtracting 1/d in Yale Au exp.
  Yale experiment: agreement between experiment and (preferred) 

Casimir model for Au plates, after subtracting 1/d contribution via fitting



Other Au experiments
  Indiana/Riverside experiments: no agreement between experiment 

and (preferred) Casimir model for Au plates, 1/d does not work here!

 Experimental artifacts?

What is the origin of the additional force residual?

 Theoretical inaccuracies?
 Misrepresented systematic effects?
 New forces?

electrostatic patches



Electrostatic patches



The surface of a conductor is an equipotential only for a perfectly 
clean surface of a homogeneous system cut along one of its 
crystalline planes.

Real metallic surfaces are not equipotentials

The patch effect

 Real surfaces are composed of crystallites

 Even a single crystal can produce patch 
effects due to the presence of contaminants

 Energy to extract an electron from a crystal 
depends on crystallographic orientation of the 
surface different work functions

Au (111) face

70 mV

0 mV

- 70 mV



Topography and patches

(Gaillard et al, APL 2006) 

Atomic force microscopy !
            topography

Electron backscattered diffraction     !
        crystallographic orientation

Kelvin probe force microscopy!
               surface potential

Each crystallographic plane has an associated work 
function which determines the local potential 



Relevance of patches 

 Measurements of gravity on elementary charged particles
(Witteborn and Fairbank, PRL 1967) 

 Large systematics in tests of general relativity
(Everitt et al, PRL 2011) 

 Produce heating loss in ion traps and Rydberg atoms

(Monroe et al, PRL 2006) 

 Force sensing, eg. Casimir interactions

(Speake and Trenkel, PRL 2003) 



Estimating patch effects
 Solve the Laplace equation for given geometry

 Input surface potential information (surface physics)

Sphere-plane: use bi-spherical coordinates

(Behunin, DD et al, PRA 2012) 

- modeling!
- KPFM measurements



Modeling patch effects
Assuming one does not know the patch voltage distribution, 
one follows an statistical approach:

 patch layout is an stochastic process

 tesselate the surface

 assign potential to each patch 

 - polygons: patch domains!
 - potential = crystallographic orientation 

Inspiration: voltage is constant 
over a given patch domain, as 
is observed in  experiments 
(KPFM+ electron diffraction) 



Voltage correlations
If many patches are contained within the effective area of interaction

Va(xa)Vb(xb) ! hVa(xa)Vb(xb)i ⌘ Cab(xa,xb) two-point correlator

Quasi-local model



Results for sphere-plane
Using the quasi-local model with correlations computed 
for a fixed tesselation,                                                            , !
we compute                

Lpatch ⌧ D ! Fsp / D�3 Lpatch � D ! Fsp / D�1

Asymptotic values for small and large patches:

Fsp

hV (x)V (x0)iv = v2rms

X

a

⇥a(x)⇥a(x
0)



Comparing to Casimir residual
We compare the computed patch pressure to the difference 
between Casimir experiment and theory:

 - finite temperature, roughness, Au optical data (with Drude extrapolation to low     )!

- too large pressure for clean Au

- good fit for dirty Au

(Behunin, Intravaia, DD et al, PRA 2012) 

 Experimental pressure residual             from Decca et al (2010-2014)P
exp

 Casimir pressure         via Lifshitz theoryPth

 Patch pressure                  from quasi-local modelPpatches

�P = P
exp

� P
th



Measuring patches with KPFM
Kelvin probe force microscopy: a special kind of AFM

U(D) =
1

2
C�V 2 F (D) = @DU

In order to quantify        , two extra potentials are applied:�V

 A DC bias       to minimize the tip-sample electrostatic interactionV0

 An AC potential      V1 sin(!t)

F! = �@DC[(�V � V0)V1 sin(!t)] is measured with a lock-in

At                the local patch potential is given by F! = 0 �V (x, y) = V0



Surface potential maps
 AM-KPFM measurements performed at ambient pressure and 

temperature on the same samples used for Casimir experiments

 Parameters:

- tip-sample distance fixed at D = 30 nm

(no cross-talk topo/electrical signals) 

- Scanning parameters 1 Hz per line
V1 = 2.5V
scan range is 20 mV

- Map area: 15.4⇥ 15.4 µm2

(512 x 512 pixels)

- Tip: 20 nm radius of curvature

- Cantilever: ! ⇡ 75 kHzoscillation freq:
stiffness: k ⇡ 2.8 N m�1



Theo-exper. comparison
Sphere-plane patch force:

 Patches measured only on the planar surface

 Assumption: patches on sphere w/ similar stat. prop. as on plane

(R � D)

P = (2⇡R)�1@DFsp Equivalent sphere-plane patch pressure

Fa,b = @DEa,b

�P = P
exp

� P
th

Ppatches

Patch force too small to explain 
the difference between the 
measured Casimir pressure and 
the theoretical expectations from 
Lifshitz theory!

(Behunin, DD et al, PRA 2014) 
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Some observations 

 Measure patch distribution on sphere, and verify if there are no !
    cross-correlations between sphere and plane

Further work is needed to cure the limitations of the previous analysis:

 Measure patch distribution at the same pressures (                        ) at 
which Casimir measurements are performed. Contamination, and 
hence patch distribution, vary with pressure.

P ⇡ 10

�7
torr

 Perform Casimir and KPFM measurements in situ, if possible

With the present information, we conclude that patches do not explain 
the Casimir theory-experiment of Casimir measurements using Au 
plates. 



Another recent preprint
However, in a recent preprint from Munday’s group (arXiv:1409.5012):

 Performed heterodyne AM-KPFM measurements on Au samples

D(t) = D + �D sin(!1t)

higher spatial resolution

 Obtained a much higher !
    patch pressure, (potentially) !
    in agreement with the   !
    Casimir experiment-theory !
    discrepancy.

F!2 = �(�D/2) @2
DC[(�V � V0)V1 sin(!2t)]



Conclusions
 Patches do contribute to the Casimir pressure as a systematic effect

 They do not seem to fill the gap of the theory/experiment discrepancy

 More work to be done: 

 Patches on Casimir plates have been measured for the first time
however, at normal conditions of pressure and temperature

- in situ measurements

- KPFM on sphere
- KPFM on larger planar areas

- AM- vs HAM-KPFM measurements



Thank you!


